Solving nonlinear optimal control problems using a hybrid IPSO-SQP algorithm
نویسندگان
چکیده
A hybrid algorithm by integrating an improved particle swarm optimization (IPSO) with successive quadratic programming (SQP), namely IPSO–SQP, is proposed for solving nonlinear optimal control problems. The particle swarm optimization (PSO) is showed to converge rapidly to a near optimum solution, but the search process will become very slow around global optimum. On the contrary, the ability of SQP is weak to escape local optimum but can achieve faster convergent speed around global optimum and the convergent accuracy can be higher. Hence, in the proposed method, at the beginning stage of search process, a PSO algorithm is employed to find a near optimum solution. In this case, an improved PSO (IPSO) algorithm is used to enhance global search ability and convergence speed of algorithm. When the change in fitness value is smaller than a predefined value, the searching process is switched to SQP to accelerate the search process and find an accurate solution. In this way, this hybrid algorithm may find an optimum solution more accurately. To validate the performance of the proposed IPSO–SQP approach, it is evaluated on two optimal control problems. Results show that the performance of the proposed algorithm is satisfactory. & 2010 Elsevier Ltd. All rights reserved.
منابع مشابه
Using Modified IPSO-SQP Algorithm to Solve Nonlinear Time Optimal Bang-Bang Control Problem
In this paper, an intelligent-gradient based algorithm is proposed to solve time optimal bang-bang control problem. The proposed algorithm is a combination of an intelligent algorithm called improved particle swarm optimization algorithm (IPSO) in the first stage of optimization process together with a gradient-based algorithm called successive quadratic programming method (SQP) in the second s...
متن کاملIPSO-SQP Algorithm for Solving Time Optimal Bang- Bang Control Problems and Its Application on Autonomous Underwater Vehicle
In this paper, an integration of Improve Particle Swarm Optimization (IPSO) in combination with Successive Quadratic programming (SQP) so called IPSO-SQP algorithm is proposed to solve time optimal bang-bang control problems. The procedure is found not sensitive to the initial guess of the solution. Due to random selection in the first stage of the search process, the chance of converging to th...
متن کاملIntegrating Differential Evolution Algorithm with Modified Hybrid GA for Solving Nonlinear Optimal Control Problems
‎Here‎, ‎we give a two phases algorithm based on integrating differential evolution (DE) algorithm with modified hybrid genetic algorithm (MHGA) for solving the associated nonlinear programming problem of a nonlinear optimal control problem‎. ‎In the first phase‎, ‎DE starts with a completely random initial population where each individual‎, ‎or solution‎...
متن کاملConstrained Nonlinear Optimal Control via a Hybrid BA-SD
The non-convex behavior presented by nonlinear systems limits the application of classical optimization techniques to solve optimal control problems for these kinds of systems. This paper proposes a hybrid algorithm, namely BA-SD, by combining Bee algorithm (BA) with steepest descent (SD) method for numerically solving nonlinear optimal control (NOC) problems. The proposed algorithm includes th...
متن کاملSolving Multi-objective Optimal Control Problems of chemical processes using Hybrid Evolutionary Algorithm
Evolutionary algorithms have been recognized to be suitable for extracting approximate solutions of multi-objective problems because of their capability to evolve a set of non-dominated solutions distributed along the Pareto frontier. This paper applies an evolutionary optimization scheme, inspired by Multi-objective Invasive Weed Optimization (MOIWO) and Non-dominated Sorting (NS) strategi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Eng. Appl. of AI
دوره 24 شماره
صفحات -
تاریخ انتشار 2011